

timezonefinder

[image: _images/badge.svg]
 [https://github.com/jannikmi/timezonefinder/actions?query=branch%3Amaster][image: documentation status]
 [https://timezonefinder.readthedocs.io/en/latest/?badge=latest][image: _images/timezonefinder.svg]
 [https://pypi.python.org/pypi/timezonefinder][image: pre-commit]
 [https://github.com/pre-commit/pre-commit][image: total PyPI downloads]
 [https://pepy.tech/project/timezonefinder][image: latest version on PyPI]
 [https://pypi.python.org/pypi/timezonefinder][image: latest version on conda-forge]
 [https://anaconda.org/conda-forge/timezonefinder][image: _images/code%2520style-black-000000.svg]
 [https://github.com/psf/black]a fast and lightweight python package for looking up the corresponding timezone for given coordinates on earth entirely offline.

Contents:

	 Getting Started
	Installation

	Dependencies

	Basic Usage

	 Usage
	Initialisation

	timezone_at()

	timezone_at_land()

	unique_timezone_at()

	certain_timezone_at()

	closest_timezone_at()

	get_geometry()

	TimezoneFinderL

	Using vectorized input

	Calling timezonefinder from the command line

	 Use Cases
	Creating aware datetime objects

	Getting a location’s time zone offset

	Django

	Use other data

	 Performance
	C extension

	Numba

	In memory mode

	Speed Benchmark Results

	 About
	Data

	References

	License

	Alternative python packages

	Comparison to tzfpy

	Comparison to pytzwhere

	Contact

	Acknowledgements

	 API
	TimezoneFinderL

	TimezoneFinder

	 Contributing
	Types of Contributions

	Get Started!

	 Changelog
	6.5.0 (2024-03-14)

	6.4.1 (2024-02-08)

	6.4.0 (2024-02-02)

	6.3.0 (2024-02-01)

	6.2.0 (2023-03-26)

	6.1.10 (2023-03-22)

	6.1.9 (2022-12-06)

	6.1.8 (2022-11-25)

	6.1.7 (2022-11-20)

	6.1.6 (2022-10-30)

	6.1.5 (2022-10-25)

	6.1.4 (2022-10-23)

	6.1.3 (2022-09-23)

	6.1.2 (2022-09-13)

	6.1.1 (2022-08-18)

	6.1.0 (2022-08-15)

	6.0.2 (2022-07-08)

	6.0.1 (2022-05-20)

	6.0.0 (2022-05-09)

	5.2.0 (2021-02-09)

	5.1.1 (2021-02-03)

	5.1.0 (2021-01-14)

	5.0.0 (2020-12-23)

	4.5.0 (2020-11-06)

	4.4.1 (2020-08-04)

	4.4.0 (2020-05-14)

	4.3.1 (2020-04-29)

	4.3.0 (2020-04-28)

	4.2.0 (2019-12-15)

	4.1.0 (2019-07-07)

	4.0.3 (2019-06-23)

	4.0.2 (2019-04-01)

	4.0.1 (2019-03-12)

	4.0.0 (2019-03-12)

	3.4.2 (2019-01-15)

	3.4.1 (2019-01-13)

	3.4.0 (2019-01-06)

	3.3.0 (2018-11-17)

	3.2.1 (2018-10-30)

	3.2.0 (2018-10-23)

	3.1.0 (2018-09-27)

	3.0.2 (2018-09-26)

	3.0.1 (2018-05-30)

	3.0.0 (2018-05-17)

	2.1.2 (2017-11-20)

	2.1.1 (2017-11-20)

	2.1.0 (2017-05-19)

	2.0.1 (2017-04-08)

	2.0.0 (2017-04-07)

	1.5.7 (2016-07-21)

	1.5.6 (2016-06-16)

	1.5.5 (2016-06-03)

	1.5.4 (2016-04-26)

	1.5.3 (2016-04-23)

	1.5.2 (2016-04-20)

	1.5.1 (2016-04-18)

	1.5.0 (2016-04-12)

	1.4.0 (2016-04-07)

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Installation

pip install timezonefinder

in case you are using pytz, also require it via its extra to avoid incompatibilities (e.g. due to updated timezone names):

pip install timezonefinder[pytz]

for improved speed also install the optional dependency numba via its extra (also check the performance chapter):

pip install timezonefinder[numba]

For installation within a Conda environment see instructions at conda-forge feedstock [https://github.com/conda-forge/timezonefinder-feedstock]

Dependencies

python3.8+, numpy, h3, cffi

optional: numba

(cf. pyproject.toml)

Basic Usage

from timezonefinder import TimezoneFinder

tf = TimezoneFinder() # reuse

query_points = [(13.358, 52.5061), ...]
for lng, lat in query_points:
 tz = tf.timezone_at(lng=lng, lat=lat) # 'Europe/Berlin'

All available features of this package are explained HERE.

Examples for common use cases can be found HERE.

Usage

Note

Also check out the API documentation or the code [https://github.com/jannikmi/timezonefinder].

Initialisation

Create a new instance of the TimezoneFinder class to be reused for multiple consequent timezone queries:

from timezonefinder import TimezoneFinder

tf = TimezoneFinder() # reuse

Use the argument bin_file_location to use data files from another location (e.g. your own compiled files):

tf = TimezoneFinder(bin_file_location="path/to/files")

timezone_at()

This is the default function to check which timezone a point lies within.
If no timezone has been matched, None is being returned.

tz = tf.timezone_at(lng=13.358, lat=52.5061) # 'Europe/Berlin'
tz = tf.timezone_at(lng=1.0, lat=50.5) # 'Etc/GMT'

Note

To reduce the risk of mixing up the coordinates, the arguments lng and lat have to be given as keyword arguments

Note

This function is optimized for speed: The last possible timezone in proximity is always returned (without checking if the point is really included).

timezone_at_land()

This package includes ocean timezones (Etc/GMT...).
If you want to explicitly receive only “land” timezones use

tz = tf.timezone_at_land(lng=13.358, lat=52.5061) # 'Europe/Berlin'
tz = tf.timezone_at_land(lng=1.0, lat=50.5) # None

unique_timezone_at()

For fast execution timezonefinder internally uses precomputed “shortcuts” which store the possible zones in proximity.
Call unique_timezone_at() if you want to compute an exact result without actually performing “point-in-polygon” tests (<- computationally expensive).
This function will return None when the correct zone cannot be uniquely determined without further computation.

tf.unique_timezone_at(lng=longitude, lat=latitude)

Note

The “lightweight” class TimezoneFinderL, which is using only shortcuts, also supports just querying the most probable timezone.

certain_timezone_at()

Note

DEPRECATED: Due to the included ocean timezones one zone will always be matched.
Use timezone_at() or timezone_at_land() instead.

This function is for making sure a point is really inside a timezone. It is slower, because all polygons (with shortcuts in that area)
are being checked until one polygon is matched. None is being returned in the case of no match.

tz = tf.certain_timezone_at(lng=13.358, lat=52.5061) # 'Europe/Berlin'

Note

Due to the “point-in-polygon-test” algorithm being used, the state of a point on the edge of a (timezone) polygon is undefined.
For those kind of points the return values is hence uncertain and might be None.
This applies for example for all points with lng=+-180.0, because the timezone polygons in the data set are being cropped at the 180 longitude border.

closest_timezone_at()

removed in version 6.0.0

get_geometry()

For querying a timezone for its geometric multi-polygon shape use get_geometry().
output format: [[polygon1, hole1,...), [polygon2, ...], ...]
and each polygon and hole is itself formated like: ([longitudes], [latitudes])
or [(lng1,lat1), (lng2,lat2),...] if coords_as_pairs=True.

tf.get_geometry(tz_name="Africa/Addis_Ababa", coords_as_pairs=True)
tf.get_geometry(tz_id=400, use_id=True)

TimezoneFinderL

TimezoneFinderL is a light version of the TimezoneFinder class.
It is useful for quickly suggesting probable timezones without using as many computational resources (cf. speed tests).
Instead of using timezone polygon data this class instantly returns the timezone just based on precomputed “shortcuts”.

Check the (API documentation) of TimezoneFinderL.

The most probable zone in proximity can be retrieved with timezone_at():

from timezonefinder import TimezoneFinderL

tf = TimezoneFinderL(in_memory=True) # reuse

query_points = [(13.358, 52.5061), ...]
for lng, lat in query_points:
 tz = tf.timezone_at(lng=lng, lat=lat) # 'Europe/Berlin'

Certain results can be retrieved with unique_timezone_at():

tf.unique_timezone_at(lng=13.358, lat=52.5061) # 'Europe/Berlin'

Note

If you only use TimezoneFinderL, you may delete all data files except timezone_names.json, shortcuts.bin to obtain a truly lightweight installation.

Using vectorized input

Check numpy.vectorize [https://docs.scipy.org/doc/numpy/reference/generated/numpy.vectorize.html]
and pandas.DataFrame.apply [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html]

Calling timezonefinder from the command line

A command line script is being installed as part of this package.

Command Line Syntax:

timezonefinder [-h] [-v] [-f {0,1,2,3,4,5}] lng lat

Example:

timezonefinder -f 4 40.5 11.7

With -v you get verbose output, without it only the timezone name is being printed.
With the argument of the flag -f one can choose between the different functions to be called:

0: TimezoneFinder.timezone_at() = default
1: TimezoneFinder.certain_timezone_at()
2: removed
3: TimezoneFinderL.timezone_at()
4: TimezoneFinderL.timezone_at_land()
5: TimezoneFinder.timezone_at_land()

Note

This will be orders of magnitude slower than using the package directly from within python as a separate Timezonefinder() instance is being

Use Cases:

Creating aware datetime objects

first pip install pytz
from pytz import timezone, utc
from pytz.exceptions import UnknownTimeZoneError

tzinfo has to be None (means naive)
naive_datetime = YOUR_NAIVE_DATETIME

try:
 tz = timezone(timezone_name)
 aware_datetime = naive_datetime.replace(tzinfo=tz)
 aware_datetime_in_utc = aware_datetime.astimezone(utc)

 naive_datetime_as_utc_converted_to_tz = tz.localize(naive_datetime)

except UnknownTimeZoneError:
 pass # {handle error}

Getting a location’s time zone offset

from datetime import datetime
from pytz import timezone, utc

def get_offset(*, lat, lng):
 """
 returns a location's time zone offset from UTC in minutes.
 """

 today = datetime.now()
 tz_target = timezone(tf.certain_timezone_at(lng=lng, lat=lat))
 # ATTENTION: tz_target could be None! handle error case
 today_target = tz_target.localize(today)
 today_utc = utc.localize(today)
 return (today_utc - today_target).total_seconds() / 60

bergamo = {"lat": 45.69, "lng": 9.67}
minute_offset = get_offset(**bergamo)

also see the pytz Doc [http://pytz.sourceforge.net/].

Django

querying the timezone name in a Django view:

def find_timezone(request, lat, lng):
 lat = float(lat)
 lng = float(lng)
 try:
 timezone_name = tf.timezone_at(lng=lng, lat=lat)
 except ValueError:
 # the coordinates were out of bounds
 pass # {handle error}
 if timezone_name is None:
 # no timezone matched
 ...

 # do something with timezone_name
 ...

Use other data

File converter script

This package includes the file_converter.py script to parse timezone data and compile the binary data files required
by the timezonefinder package.
This script is built for processing the specific geojson format of the default data: timezone-boundary-builder [https://github.com/evansiroky/timezone-boundary-builder/releases].
Any other data in this format can also be parsed:

python /path/to/timezonefinder/scripts/file_converter.py [-inp /path/to/input.json] [-out /path/to/output_folder]

Per default the script parses the combined.json from its own parent directory (timezonefinder) into data files inside its parent directory.
How to use the timezonefinder package with data files from another location is described HERE.

Data parsing shell script

The included parse_data.sh shell script simplifies downloading the latest version of
timezone-boundary-builder [https://github.com/evansiroky/timezone-boundary-builder/releases]
data and parsing in with file_converter.py.
It supports downloading and parsing the timezone-boundary-builder version WITHOUT ocean timezones.
This is useful if you do not require ocean timezones and want to have smaller data files.

/bin/bash /path/to/timezonefinder/parse_data.sh

Performance

C extension

During installation timezonefinder automatically tries to compile a C extension with an implementation of the time critical point in polygon check algorithm.
In order for this to work, a Clang compiler has to be installed.

Note

If compilation fails (due to e.g. missing C compiler or broken cffi installation) timezonefinder will silently fall back to a pure Python implementation (~400x slower, cf. speed test results below).

For testing if the compiled C implementation of the point in polygon algorithm is being used:

TimezoneFinder.using_clang_pip() # returns True or False

Numba

Some of the utility function (cf. utils.py) can be JIT compiled automatically by installing the optional dependency numba:

pip install timezonefinder[numba]

It is highly recommended to install Numba for increased performance when the C extensions cannot be used (e.g. C compiler is not present at build time).

Note

If Numba can be imported, the JIT compiled Python version of the point in polygon check algorithm will be used instead of the C alternative as it is even faster (cf. speed test results below).

For testing if Numba is being used to JIT compile helper functions:

TimezoneFinder.using_numba() # returns True or False

In memory mode

To speed up the computations at the cost of memory consumption and initialisation time, pass in_memory=True during initialisation.
This causes all binary files to be read into memory.

tf = TimezoneFinder(in_memory=True)

Speed Benchmark Results

obtained on MacBook Pro (15-inch, 2017), 2,8 GHz Intel Core i7 and timezonefinder version 6.1.0

Timezone finding

scripts/check_speed_timezone_finding.py

Without Numba (using C extension):

using C implementation: True
using Numba: False

10000 'on land points' (points included in a land timezone)
in memory mode: False

function name | s/query | pts/s
--
TimezoneFinder.timezone_at() | 7.5e-05 | 1.3e+04
TimezoneFinder.timezone_at_land() | 7.7e-05 | 1.3e+04
TimezoneFinderL.timezone_at() | 7.3e-06 | 1.4e+05
TimezoneFinderL.timezone_at_land() | 8.3e-06 | 1.2e+05

10000 random points (anywhere on earth)
in memory mode: False

function name | s/query | pts/s
--
TimezoneFinder.timezone_at() | 8.8e-05 | 1.1e+04
TimezoneFinder.timezone_at_land() | 8.9e-05 | 1.1e+04
TimezoneFinderL.timezone_at() | 6.6e-06 | 1.5e+05
TimezoneFinderL.timezone_at_land() | 9.5e-06 | 1.1e+05

10000 'on land points' (points included in a land timezone)
in memory mode: True

function name | s/query | pts/s
--
TimezoneFinder.timezone_at() | 3.9e-05 | 2.6e+04
TimezoneFinder.timezone_at_land() | 4.0e-05 | 2.5e+04
TimezoneFinderL.timezone_at() | 6.3e-06 | 1.6e+05
TimezoneFinderL.timezone_at_land() | 8.6e-06 | 1.2e+05

10000 random points (anywhere on earth)
in memory mode: True

function name | s/query | pts/s
--
TimezoneFinder.timezone_at() | 3.5e-05 | 2.8e+04
TimezoneFinder.timezone_at_land() | 3.9e-05 | 2.6e+04
TimezoneFinderL.timezone_at() | 6.9e-06 | 1.5e+05
TimezoneFinderL.timezone_at_land() | 9.0e-06 | 1.1e+05

With Numba:

using C implementation: False
using Numba: True

10000 'on land points' (points included in a land timezone)
in memory mode: False

function name | s/query | pts/s
--
TimezoneFinder.timezone_at() | 7.1e-05 | 1.4e+04
TimezoneFinder.timezone_at_land() | 7.4e-05 | 1.3e+04
TimezoneFinderL.timezone_at() | 6.5e-06 | 1.5e+05
TimezoneFinderL.timezone_at_land() | 9.1e-06 | 1.1e+05

10000 random points (anywhere on earth)
in memory mode: False

function name | s/query | pts/s
--
TimezoneFinder.timezone_at() | 8.2e-05 | 1.2e+04
TimezoneFinder.timezone_at_land() | 8.1e-05 | 1.2e+04
TimezoneFinderL.timezone_at() | 6.9e-06 | 1.5e+05
TimezoneFinderL.timezone_at_land() | 8.8e-06 | 1.1e+05

10000 'on land points' (points included in a land timezone)
in memory mode: True

function name | s/query | pts/s
--
TimezoneFinder.timezone_at() | 3.7e-05 | 2.7e+04
TimezoneFinder.timezone_at_land() | 4.0e-05 | 2.5e+04
TimezoneFinderL.timezone_at() | 6.9e-06 | 1.5e+05
TimezoneFinderL.timezone_at_land() | 8.1e-06 | 1.2e+05

10000 random points (anywhere on earth)
in memory mode: True

function name | s/query | pts/s
--
TimezoneFinder.timezone_at() | 3.2e-05 | 3.1e+04
TimezoneFinder.timezone_at_land() | 3.4e-05 | 2.9e+04
TimezoneFinderL.timezone_at() | 6.4e-06 | 1.6e+05
TimezoneFinderL.timezone_at_land() | 7.6e-06 | 1.3e+05

Point in polygon checks

scripts/check_speed_inside_polygon.py

Without Numba:

testing the speed of the different point in polygon algorithm implementations
testing 1000 queries: random points and timezone polygons
Python implementation using Numba JIT compilation: False

inside_clang: 2.7e-05 s/query, 3.7e+04 queries/s
inside_python: 1.0e-02 s/query, 9.9e+01 queries/s
C implementation is 374.1x faster than the Python implementation WITHOUT Numba

With Numba:

testing the speed of the different point in polygon algorithm implementations
testing 10000 queries: random points and timezone polygons
Python implementation using Numba JIT compilation: True

inside_clang: 2.2e-05 s/query, 4.5e+04 queries/s
inside_python: 1.8e-05 s/query, 5.5e+04 queries/s
Python implementation WITH Numba is 0.2x faster than the C implementation

Initialisation

testing initialiation: TimezoneFinder(in_memory=True)
avg. startup time: 7.01e-01 (10 runs)

testing initialiation: TimezoneFinder(in_memory=False)
avg. startup time: 7.85e-01 (10 runs)

testing initialiation: TimezoneFinderL(in_memory=True)
avg. startup time: 6.66e-01 (10 runs)

testing initialiation: TimezoneFinderL(in_memory=False)
avg. startup time: 7.30e-01 (10 runs)

About

[image: _images/badge.svg]
 [https://github.com/jannikmi/timezonefinder/actions?query=branch%3Amaster][image: documentation status]
 [https://timezonefinder.readthedocs.io/en/latest/?badge=latest][image: _images/timezonefinder.svg]
 [https://pypi.python.org/pypi/timezonefinder][image: pre-commit]
 [https://github.com/pre-commit/pre-commit][image: total PyPI downloads]
 [https://pepy.tech/project/timezonefinder][image: latest version on PyPI]
 [https://pypi.python.org/pypi/timezonefinder][image: latest version on conda-forge]
 [https://anaconda.org/conda-forge/timezonefinder][image: _images/code%2520style-black-000000.svg]
 [https://github.com/psf/black]timezonefinder is a python package for looking up the corresponding timezone for given coordinates on earth entirely offline.

Timezones internally are being represented by polygons and the timezone membership of a given point (= lat lng coordinate pair) is determined by a point in polygon (PIP) check.
In many cases an expensive PIP check can be avoided.
This package currently uses a precomputed timezone polygon index based on the geospatial hexagon index of the h3 library [https://github.com/uber/h3-py].
Among other tweaks this index makes timezonefinder efficient (also check the performance chapter).
See the docstrings in the source code for further explanation.

Data

Current data set in use: precompiled timezone-boundary-builder [https://github.com/evansiroky/timezone-boundary-builder] (WITH oceans, geoJSON)

Note

In the data set the timezone polygons often include territorial waters -> they do NOT follow the shorelines.
This makes the results of certain_timezone_at() less expressive:
from a timezone match one cannot distinguish whether a query point lies on land or in ocean.

Note

Please note that timezone polygons might be overlapping (cf. e.g. timezone-boundary-builder/issue/105 [https://github.com/evansiroky/timezone-boundary-builder/issues/105])
and that hence a query coordinate can actually match multiple time zones.
timezonefinder does currently NOT support such multiplicity and will always only return the first found match.

	package size: ~46 MB

	original data size: ~110 MB

References

GitHub [https://github.com/jannikmi/timezonefinder]

PyPI [https://pypi.python.org/pypi/timezonefinder/]

online GUI and API [http://timezonefinder.michelfe.it]

conda-forge feedstock [https://github.com/conda-forge/timezonefinder-feedstock]

ruby port: timezone_finder [https://github.com/gunyarakun/timezone_finder]

download stats [https://pepy.tech/project/timezonefinder]

License

timezonefinder is distributed under the terms of the MIT license
(see LICENSE [https://github.com/jannikmi/timezonefinder/blob/master/LICENSE]).

Alternative python packages

	tzfpy [https://github.com/ringsaturn/tzfpy] (less accurate, more lightweight, faster)

	pytzwhere [https://pypi.python.org/pypi/tzwhere] (not maintained)

Comparison to tzfpy

Differences:

	tzfpy is a Python binding of the Rust package tzf-rs

	tzfpy has no startup time

	
	tzfpy uses simplified timezone polygons (data):
	
	this reduces the memory requirements

	this reduces the accuracy

	this increases the lookup speed

	tzfpy uses hierarchical tree of rectangles to speed up the lookup but auto fall back to polygon data if cache miss

Comparison to pytzwhere

This project has originally been derived from pytzwhere [https://pypi.python.org/pypi/tzwhere]
(github [https://github.com/pegler/pytzwhere]), but aims at providing
improved performance and usability.

pytzwhere is parsing a 76MB .csv file (floats stored as strings!) completely into memory and computing shortcuts from this data on every startup.
This is time, memory and CPU consuming. Additionally calculating with floats is slow,
keeping those 4M+ floats in the RAM all the time is unnecessary and the precision of floats is not even needed in this case (s. detailed comparison and speed tests below).

In comparison most notably initialisation time and memory usage are significantly reduced.
pytzwhere is using up to 450MB of RAM (with shapely and numpy active),
because it is parsing and keeping all the timezone polygons in the memory.
This uses unnecessary time/ computation/ memory and this was the reason I created this package in the first place.
This package uses at most 40MB (= encountered memory consumption of the python process) and has some more advantages:

Differences:

	highly decreased memory usage

	highly reduced start up time

	usage of 32bit int (instead of 64+bit float) reduces computing time and memory consumption. The accuracy of 32bit int is still high enough. According to my calculations the worst accuracy is 1cm at the equator. This is far more precise than the discrete polygons in the data.

	the data is stored in memory friendly binary files (approx. 41MB in total, original data 120MB .json)

	data is only being read on demand (not completely read into memory if not needed)

	precomputed shortcuts are included to quickly look up which polygons have to be checked

	function get_geometry() enables querying timezones for their geometric shape (= multipolygon with holes)

	further speedup possible by the use of numba (code JIT compilation)

	tz_where is still using the outdated tz_world data set

Contact

Tell me if and how your are using this package. This encourages me to develop and test it further.

Most certainly there is stuff I missed, things I could have optimized even further or explained more clearly, etc.
I would be really glad to get some feedback.

If you encounter any bugs, have suggestions etc. do not hesitate to open an Issue or add a Pull Requests on Git.
Please refer to the contribution guidelines

Acknowledgements

Thanks to:

	Adam [https://github.com/adamchainz] for adding organisational features to the project and for helping me with publishing and testing routines.

	ringsaturn [https://github.com/ringsaturn] for valuable feedback, sponsoring this project, creating the tzfpy package and adding the pytz compatibility extra

	snowman2 [https://github.com/snowman2] for creating the conda-forge recipe.

	synapticarbors [https://github.com/synapticarbors] for fixing Numba import with py27.

	zedrdave [https://github.com/zedrdave] for valuable feedback.

	Tyler Huntley [https://github.com/Ty1776] for adding docstrings

API documentation

TimezoneFinderL

	
class timezonefinder.TimezoneFinderL(bin_file_location: str | Path | None = None, in_memory: bool = False)

	Bases: AbstractTimezoneFinder

a ‘light’ version of the TimezoneFinder class for quickly suggesting a timezone for a point on earth

Instead of using timezone polygon data like TimezoneFinder,
this class only uses a precomputed ‘shortcut’ to suggest a probable result:
the most common zone in a rectangle of a half degree of latitude and one degree of longitude

	
timezone_at(*, lng: float, lat: float) → str | None

	instantly returns the name of the most common zone within the corresponding shortcut

	Note: ‘most common’ in this context means that the polygons with the most coordinates in sum
	occurring in the corresponding shortcut belong to this zone.

	Parameters:

	
	lng – longitude of the point in degree (-180.0 to 180.0)

	lat – latitude in degree (90.0 to -90.0)

	Returns:

	the timezone name of the most common zone or None if there are no timezone polygons in this shortcut

	
bin_file_location: Path

	

	
shortcut_mapping

	

	
in_memory

	

	
timezone_names

	

	
poly_zone_ids

	

	
__init__(bin_file_location: str | Path | None = None, in_memory: bool = False)

	Initialize the AbstractTimezoneFinder.
:param bin_file_location: The path to the binary data files to use. If None, uses native package data.
:param in_memory: Whether to completely read and keep the binary files in memory.

	
binary_data_attributes: List[str] = ['poly_zone_ids']

	List of attribute names that store opened binary data files.

	
get_shortcut_polys(*, lng: float, lat: float) → ndarray

	Get the polygon IDs in the shortcut corresponding to the given coordinates.

	Parameters:

	
	lng – The longitude of the point in degrees (-180.0 to 180.0).

	lat – The latitude of the point in degrees (90.0 to -90.0).

	Returns:

	An array of polygon IDs.

	
most_common_zone_id(*, lng: float, lat: float) → int | None

	Get the most common zone ID in the shortcut corresponding to the given coordinates.

	Parameters:

	
	lng – The longitude of the point in degrees (-180.0 to 180.0).

	lat – The latitude of the point in degrees (90.0 to -90.0).

	Returns:

	The most common zone ID or None if no polygons exist in the shortcut.

	
property nr_of_zones

	Get the number of timezones.

	Return type:

	int

	
timezone_at_land(*, lng: float, lat: float) → str | None

	computes in which land timezone a point is included in

Especially for large polygons it is expensive to check if a point is really included.
To speed things up there are “shortcuts” being used (stored in a binary file),
which have been precomputed and store which timezone polygons have to be checked.

	Parameters:

	
	lng – longitude of the point in degree (-180.0 to 180.0)

	lat – latitude in degree (90.0 to -90.0)

	Returns:

	the timezone name of a matching polygon or
None when an ocean timezone (“Etc/GMT+-XX”) has been matched.

	
unique_timezone_at(*, lng: float, lat: float) → str | None

	returns the name of a unique zone within the corresponding shortcut

	Parameters:

	
	lng – longitude of the point in degree (-180.0 to 180.0)

	lat – latitude in degree (90.0 to -90.0)

	Returns:

	the timezone name of the unique zone or None if there are no or multiple zones in this shortcut

	
unique_zone_id(*, lng: float, lat: float) → int | None

	Get the unique zone ID in the shortcut corresponding to the given coordinates.

	Parameters:

	
	lng – The longitude of the point in degrees (-180.0 to 180.0).

	lat – The latitude of the point in degrees (90.0 to -90.0).

	Returns:

	The unique zone ID or None if no polygons exist in the shortcut.

	
static using_clang_pip() → bool

	
	Returns:

	True if the compiled C implementation of the point in polygon algorithm is being used

	
static using_numba() → bool

	Check if Numba is being used.

	Return type:

	bool

	Returns:

	True if Numba is being used to JIT compile helper functions

	
zone_id_of(poly_id: int) → int

	Get the zone ID of a polygon.

	Parameters:

	poly_id (int) – The ID of the polygon.

	Return type:

	int

	
zone_ids_of(poly_ids: ndarray) → ndarray

	Get the zone IDs of multiple polygons.

	Parameters:

	poly_ids – An array of polygon IDs.

	Returns:

	An array of zone IDs corresponding to the given polygon IDs.

	
zone_name_from_id(zone_id: int) → str

	Get the zone name from a zone ID.

	Parameters:

	zone_id – The ID of the zone.

	Returns:

	The name of the zone.

	Raises:

	ValueError – If the timezone could not be found.

	
zone_name_from_poly_id(poly_id: int) → str

	Get the zone name from a polygon ID.

	Parameters:

	poly_id – The ID of the polygon.

	Returns:

	The name of the zone.

TimezoneFinder

	
class timezonefinder.TimezoneFinder(bin_file_location: str | None = None, in_memory: bool = False)

	Bases: AbstractTimezoneFinder

Class for quickly finding the timezone of a point on earth offline.

Because of indexing (“shortcuts”), not all timezone polygons have to be tested during a query.

Opens the required timezone polygon data in binary files to enable fast access.
For a detailed documentation of data management please refer to the code documentation of
file_converter.py [https://github.com/jannikmi/timezonefinder/blob/master/scripts/file_converter.py]

	Variables:

	binary_data_attributes – the names of all attributes which store the opened binary data files

	Parameters:

	
	bin_file_location – path to the binary data files to use, None if native package data should be used

	in_memory – whether to completely read and keep the binary files in memory

	
binary_data_attributes: List[str] = ['poly_zone_ids', 'poly_coord_amount', 'poly_adr2data', 'poly_bounds', 'poly_data', 'poly_nr2zone_id', 'hole_coord_amount', 'hole_adr2data', 'hole_data']

	List of attribute names that store opened binary data files.

	
__init__(bin_file_location: str | None = None, in_memory: bool = False)

	Initialize the AbstractTimezoneFinder.
:param bin_file_location: The path to the binary data files to use. If None, uses native package data.
:param in_memory: Whether to completely read and keep the binary files in memory.

	
property nr_of_polygons: int

	Get the number of polygons.

	Returns:

	The number of polygons.

	
coords_of(polygon_nr: int = 0) → ndarray

	Get the coordinates of a polygon.

	Parameters:

	polygon_nr – The index of the polygon.

	Returns:

	Array of coordinates.

	
get_polygon(polygon_nr: int, coords_as_pairs: bool = False) → List[List[Tuple[float, float]] | List[List[float]]]

	Get the polygon coordinates of a given polygon number.

	Parameters:

	
	polygon_nr – Polygon number

	coords_as_pairs – Determines the structure of the polygon representation

	Returns:

	List of polygon coordinates

	
get_geometry(tz_name: str | None = '', tz_id: int | None = 0, use_id: bool = False, coords_as_pairs: bool = False)

	retrieves the geometry of a timezone polygon

	Parameters:

	
	tz_name – one of the names in timezone_names.json or self.timezone_names

	tz_id – the id of the timezone (=index in self.timezone_names)

	use_id – if True uses tz_id instead of tz_name

	coords_as_pairs – determines the structure of the polygon representation

	Returns:

	a data structure representing the multipolygon of this timezone
output format: [[polygon1, hole1, hole2...], [polygon2, ...], ...]
and each polygon and hole is itself formatted like: ([longitudes], [latitudes])
or [(lng1,lat1), (lng2,lat2),...] if coords_as_pairs=True.

	
get_polygon_boundaries(poly_id: int) → Tuple[int, int, int, int]

	returns the boundaries of the polygon = (lng_max, lng_min, lat_max, lat_min) converted to int32

	
outside_the_boundaries_of(poly_id: int, x: int, y: int) → bool

	Check if a point is outside the boundaries of a polygon.

	Parameters:

	
	poly_id – Polygon ID

	x – X-coordinate of the point

	y – Y-coordinate of the point

	Returns:

	True if the point is outside the boundaries, False otherwise

	
inside_of_polygon(poly_id: int, x: int, y: int) → bool

	Check if a point is inside a polygon.

	Parameters:

	
	poly_id – Polygon ID

	x – X-coordinate of the point

	y – Y-coordinate of the point

	Returns:

	True if the point is inside the polygon, False otherwise

	
poly_zone_ids

	

	
poly_coord_amount

	

	
poly_adr2data

	

	
poly_bounds

	

	
poly_data

	

	
poly_nr2zone_id

	

	
hole_coord_amount

	

	
hole_adr2data

	

	
hole_data

	

	
hole_registry

	

	
bin_file_location: Path

	

	
get_shortcut_polys(*, lng: float, lat: float) → ndarray

	Get the polygon IDs in the shortcut corresponding to the given coordinates.

	Parameters:

	
	lng – The longitude of the point in degrees (-180.0 to 180.0).

	lat – The latitude of the point in degrees (90.0 to -90.0).

	Returns:

	An array of polygon IDs.

	
in_memory

	

	
most_common_zone_id(*, lng: float, lat: float) → int | None

	Get the most common zone ID in the shortcut corresponding to the given coordinates.

	Parameters:

	
	lng – The longitude of the point in degrees (-180.0 to 180.0).

	lat – The latitude of the point in degrees (90.0 to -90.0).

	Returns:

	The most common zone ID or None if no polygons exist in the shortcut.

	
property nr_of_zones

	Get the number of timezones.

	Return type:

	int

	
shortcut_mapping

	

	
timezone_at(*, lng: float, lat: float) → str | None

	computes in which ocean OR land timezone a point is included in

Especially for large polygons it is expensive to check if a point is really included.
In case there is only one possible zone (left), this zone will instantly be returned without actually checking
if the query point is included in this polygon.

	To speed things up there are “shortcuts” being used
	which have been precomputed and store which timezone polygons have to be checked.

Note

Since ocean timezones span the whole globe, some timezone will always be matched!
None can only be returned when you have compiled timezone data without such “full coverage”.

	Parameters:

	
	lng – longitude of the point in degree (-180.0 to 180.0)

	lat – latitude in degree (90.0 to -90.0)

	Returns:

	the timezone name of the matched timezone polygon. possibly “Etc/GMT+-XX” in case of an ocean timezone.

	
timezone_at_land(*, lng: float, lat: float) → str | None

	computes in which land timezone a point is included in

Especially for large polygons it is expensive to check if a point is really included.
To speed things up there are “shortcuts” being used (stored in a binary file),
which have been precomputed and store which timezone polygons have to be checked.

	Parameters:

	
	lng – longitude of the point in degree (-180.0 to 180.0)

	lat – latitude in degree (90.0 to -90.0)

	Returns:

	the timezone name of a matching polygon or
None when an ocean timezone (“Etc/GMT+-XX”) has been matched.

	
timezone_names

	

	
unique_timezone_at(*, lng: float, lat: float) → str | None

	returns the name of a unique zone within the corresponding shortcut

	Parameters:

	
	lng – longitude of the point in degree (-180.0 to 180.0)

	lat – latitude in degree (90.0 to -90.0)

	Returns:

	the timezone name of the unique zone or None if there are no or multiple zones in this shortcut

	
unique_zone_id(*, lng: float, lat: float) → int | None

	Get the unique zone ID in the shortcut corresponding to the given coordinates.

	Parameters:

	
	lng – The longitude of the point in degrees (-180.0 to 180.0).

	lat – The latitude of the point in degrees (90.0 to -90.0).

	Returns:

	The unique zone ID or None if no polygons exist in the shortcut.

	
static using_clang_pip() → bool

	
	Returns:

	True if the compiled C implementation of the point in polygon algorithm is being used

	
static using_numba() → bool

	Check if Numba is being used.

	Return type:

	bool

	Returns:

	True if Numba is being used to JIT compile helper functions

	
zone_id_of(poly_id: int) → int

	Get the zone ID of a polygon.

	Parameters:

	poly_id (int) – The ID of the polygon.

	Return type:

	int

	
zone_ids_of(poly_ids: ndarray) → ndarray

	Get the zone IDs of multiple polygons.

	Parameters:

	poly_ids – An array of polygon IDs.

	Returns:

	An array of zone IDs corresponding to the given polygon IDs.

	
zone_name_from_id(zone_id: int) → str

	Get the zone name from a zone ID.

	Parameters:

	zone_id – The ID of the zone.

	Returns:

	The name of the zone.

	Raises:

	ValueError – If the timezone could not be found.

	
zone_name_from_poly_id(poly_id: int) → str

	Get the zone name from a polygon ID.

	Parameters:

	poly_id – The ID of the polygon.

	Returns:

	The name of the zone.

	
certain_timezone_at(*, lng: float, lat: float) → str | None

	checks in which timezone polygon the point is certainly included in

Note

this is only meaningful when you have compiled your own timezone data
where there are areas without timezone polygon coverage.
Otherwise, some timezone will always be matched and the functionality is equal to using .timezone_at()
-> useless to actually test all polygons.

Note

using this function is less performant than .timezone_at()

	Parameters:

	
	lng – longitude of the point in degree

	lat – latitude in degree

	Returns:

	the timezone name of the polygon the point is included in or None

Contribution Guidelines

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs via Github Issues [https://github.com/jannikmi/timezonefinder/issues].

If you are reporting a bug, please include:

	Your version of this package, python and Numba (if you use it)

	Any other details about your local setup that might be helpful in troubleshooting, e.g. operating system.

	Detailed steps to reproduce the bug.

	Detailed description of the bug (error log etc.).

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “help wanted”
and not assigned to anyone is open to whoever wants to implement it - please
leave a comment to say you have started working on it, and open a pull request
as soon as you have something working, so that Travis starts building it.

Issues without “help wanted” generally already have some code ready in the
background (maybe it’s not yet open source), but you can still contribute to
them by saying how you’d find the fix useful, linking to known prior art, or
other such help.

Write Documentation

Probably for some features the documentation is missing or unclear. You can help with that!

Submit Feedback

The best way to send feedback is to file an issue via Github Issues [https://github.com/jannikmi/timezonefinder/issues].

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement. Create multiple issues if necessary.

	Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up this package for local development.

	Fork this repo on GitHub.

	Clone your fork locally

	To make changes, create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

	Check out the instructions and notes in publish.py

	Install tox and run the tests:

$ pip install tox
$ tox

The tox.ini file defines a large number of test environments, for
different Python etc., plus for checking codestyle. During
development of a feature/fix, you’ll probably want to run just one plus the
relevant codestyle:

$ tox -e codestyle

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website. This will trigger the Travis CI build which runs the tests against all supported versions of Python.

Changelog

6.5.0 (2024-03-14)

	updated the data to 2024a [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2023a].

internal:

	use ruff linter in pre-commit hook

	make dependency specifications less strict

6.4.1 (2024-02-08)

	added official support for python 3.8 again, by specifying numba as multiple constraint dependency

internal:

	added unit tests for polygon boundary binary reading

6.4.0 (2024-02-02)

	added python 3.12 support (supported by numba since release 0.59.0), Closes #208

	dropped official support for python 3.8, because the optional dependency numba requires python 3.9. this package might still work with python 3.8, but it is not tested anymore.

6.3.0 (2024-02-01)

	updated the data to 2023d [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2023d].

internal:

	added docstrings. Thanks to Tyler Huntley [https://github.com/Ty1776]

	automatically skip GitHub actions publishing when the version already exists. useful for minor improvements without publishing a version. build would always fail otherwise

	enable tests for python 3.11 with numba

	enable tests for python 3.12

	added tests for generating the documentation

	use poetry dependency group specification (closing #199)

6.2.0 (2023-03-26)

	updated the data to 2023b [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2023b].

6.1.10 (2023-03-22)

	added a pytz extra for easily maintaining compatibility

	improved documentation

6.1.9 (2022-12-06)

	updated the data to 2022g [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2022g].

6.1.8 (2022-11-25)

	pumped h3 dependency to >=3.7.6,<4 to support python 3.11 (FIX #170)

	added python 3.11 tests (not yet supporting numba)

6.1.7 (2022-11-20)

	updated the data to 2022f [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2022f].

	pinning dependencies more strictly

6.1.6 (2022-10-30)

	updated the data to 2022d [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2022d].

6.1.5 (2022-10-25)

	updated the data to 2022b [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2022b].

	logging build failures with warnings

6.1.4 (2022-10-23)

	more permissive optional Numba dependency specification (FIX #162, impossible using latest numpy version)

	made all dependency specifications more permissive following the same rationale

6.1.3 (2022-09-23)

	bugfix broken package build in the case of a broken cffi installation (GitHub issue #155). Skip build process if cffi fails. For performance reasons using the C extension should remain the default behavior. Hence the cffi dependency should not be optional.

6.1.2 (2022-09-13)

	bugfix potentially broken pip install due to a mismatch in cffi versions (GitHub issue #151)

6.1.1 (2022-08-18)

internals:

	
	minimized and cleaned up installation footprint (addresses GitHub Issue #151):
	
	excluded script, changelog etc. files

	included C extension into the “timezonefinder” package folder

	added initialisation speed benchmark

6.1.0 (2022-08-15)

	included point-in-polygon implementation in C

	included build script to (optionally) build C point-in-polygon extension automatically during installation

	added cffi as a dependency to build and interact with the C extension

	improved initialisation speed: read timezone polygon id index (h3 mapping) with np.fromfile

	improved CLI speed: construct TimezoneFinder() instances only on demand

internals:

	updated documentation: Numba installation is no longer recommended (it is a huge dependency and should be optional)

	clarified documentation: TimezoneFinder() instances should be reused

	added separate speed benchmark scripts for point in polygon algorithm implementations and the different timezone finding functions

	added separate section in the documentation for performance including speed benchmark results

	added checks if all timezone polygons are actually in use (appear in index) to the file conversion script

	added and improved utility functions as well as tests

	improved typing

6.0.2 (2022-07-08)

	bump numpy dependency version to 1.22 (vulnerability fix)

	officially supported python versions >=3.8,<3.11 (due to numpy and numba constraints)

	packaging now completely based on pyproject.toml (poetry)

6.0.1 (2022-05-20)

	explicitly included py.typed in the package to allow mypy users to run static type checking

6.0.0 (2022-05-09)

breaking changes:

	new dependency: using h3 [https://uber.github.io/h3-py/intro.html] for indexing the timezone polygons to check (“shortcuts) instead of the previous own indexing implementation. technical details: storing all 41,162 hex cells at resolution 3 and the corresponding timezone polygons which appear in them in the shortcuts.bin (~500 KB).

	removed .closest_timezone_at(): with the current data set with ocean zones in use, any point is included in some zone. it is therefore not meaningful to search for the closest boundary! Also the timezone polygons do NOT follow the shorelines. This makes the results of closest_timezone_at() somewhat less expressive. Maintaining the non-trivial distance computation algorithms is not really at the core responsibility of this package.

	officially only supporting python>=3.7 (removed official support for python3.6, since the numpy dependency did so)

	removed v from the github release/version tags

internals:

	updated the data to 2021c [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2021c]. please note that timezone polygons might be overlapping (cf. e.g. timezone-boundary-builder/issue/105 [https://github.com/evansiroky/timezone-boundary-builder/issues/105]) and that hence a query coordinate can actually match multiple time zones. timezonefinder does currently NOT support such multiplicity and will always only return the first found match.

	shortcuts: sorting according to size of polygons (amount of coordinates) instead of the count of zone ids. useful as optimisation: smaller polygons will be checked first and can hence be “ruled-out” faster

	“most common”: now meaning the zone with the largest polygons in the shortcut (last in the shortcut sorting). please note that this does not necessarily mean the most area in the shortcut is covered by this zone. the polygon size is just an easier to compute heuristic.

	officially supporting python versions >=3.7,<3.11 (like numba)

	using poetry for dependency management

	using GitHub actions for CI instead of travis

	some minor typing improvements

	pre-commit hook improvements

In case you have criticism or feedback please reach out by creating an issue, discussion or PR on GitHub.

5.2.0 (2021-02-09)

	added function unique_timezone_at() (based on the request in issue #112). Allows querying for the unique zone within the corresponding shortcut.

5.1.1 (2021-02-03)

	BUGFIX: get_geometry() now also works for the last zone

	add get_geometry() tests

	black code style

	pre-commit checks

5.1.0 (2021-01-14)

	update the command line interface. the package can now directly be called with timezonefinder

	added the new query functions to the command line interface (to match the online API)

5.0.0 (2020-12-23)

MAJOR CHANGES:

Due to multiple user requests the ocean timezones (“Etc/GMT+-XX”) are now included in the data files per default. fix #88. Since ocean timezones span the whole globe, now every point lies within a timezone!

API changes:
* added timezone_at_land(): replaces the previous timezone_at() and returns None in case of a matched ocean timezone.

	deprecated certain_timezone_at(). only meaningful in the case of timezone data WITHOUT oceans. Has equal results as timezone_at(), but is more expensive to use.

	also looking a single closest timezone boundary with closest_timezone_at() is not really meaningful, since every point lies within a zone!

	refactored tests. new test cases for ocean timezones

4.5.0 (2020-11-06)

BUGFIX: handle output destination for data files correctly in file_converter.py (FIX #107)

	updated the data to 2020d [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2020d]

	disable a test case for an Uzbek enclave. tests fail at this coordinate, possibly a bug. issue filed here: https://github.com/evansiroky/timezone-boundary-builder/issues/94

	update parse_data.sh script to properly handle new data format

4.4.1 (2020-08-04)

BUGFIX: a longitude of 180 equals -180 (not 0.0 as previously implemented)

4.4.0 (2020-05-14)

	added new class TimezonefinderL for using JUST shortcuts (without timezone polygon data)

	therefore included the most common timezone of each shortcut stored in the binary file shortcuts_direct_id.bin

	introduced typing

	included API documentation

	read hole registry directly from json, hole_poly_ids.bin not required any more

	added the parse_data.sh shell script for downloading the latest timezone data, also with oceans

improvements of file_converter.py:

	added command line arguments for specifying the input and output directories

	read binary names from global_settings.py

	read data types from global_settings.py

	use with statement for writing binaries

	automatically detect overflow for each data type in use

	cleanup code, remove redundancies, improve codestyle

	fixing #101: make imports work for local and remote execution

4.3.1 (2020-04-29)

	BUGFIX #99: include the correct timezone_names.json in build

	wheel specific for the supported python versions (3.6, 3.7, 3.8)

4.3.0 (2020-04-28)

	updated the data to 2020a [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2020a]

	added “extra” simplifying the installation of Numba

	added minimal required python version

	added minimal required version of the dependencies

	simplified and updated settings (e.g. reading current version from file)

	also testing python 3.8 now

	loading version from file

4.2.0 (2019-12-15)

	added option to specify the location of the binary data files to use. making it possible to easily point to own compiled data. also load timezone names json from this location

	make timezone names a class attribute (instead of a global variable)

	simplify code for opening and closing multiple binary files

	added tests for a specified path to the data

	testing multiple python3 versions automatically

	pinned new requirements

	importlib_resources removed from the dependencies

	added a documentation at: https://timezonefinder.readthedocs.io/en/latest/

	added contribution guidelines

4.1.0 (2019-07-07)

	updated the data to 2019b [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2019b]

	added description of using vectorized input in readme

4.0.3 (2019-06-23)

	clarification of readme: referenced latest timezonefinderL release, better rst headlines, updated shield.io banner syntax

	clarification of speedup times (exponential notation)

	removed six and py2 dependency from tests

	minor updates to publishing routine

	minor improvement in timezone_at(): conversion coordinates to int later only when required

4.0.2 (2019-04-01)

	updated the data to 2019a [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2019a]

4.0.1 (2019-03-12)

	BUGFIX: fixing #77 (missing dependency in setup.py)

4.0.0 (2019-03-12)

	ATTENTION: Dropped Python2 support (#72)! six dependency no longer required.

	BUGFIX: fixing #74 (broken py3 with numba support)

	added in_memory-mode (adapted unit tests to test both modes, added speed tests and explanation to readme)

	use of timeit in speed tests for more accurate results

	dropped use of kwargs_only decorator (can be implemented directly with python3)

3.4.2 (2019-01-15)

	BUGFIX: fixing #70 (broken py2.7 with numba support)

	added automatic tox tests for py2.7 py3 environments with numba installed

	fixed coverage report

3.4.1 (2019-01-13)

	added test cases for the Numba helpers (#55)

	added more polygon tests to test the function inside_polygon()

	added global data type definitions (format strings) to global_settings.py

	removed tzwhere completely from the main tests (no comparison any more).

	removed code drafts for ahead of time compilation (#40)

3.4.0 (2019-01-06)

	updated the data to 2018i [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2018i]

	introduced global_settings.py to globally define settings and get rid of “magic numbers”.

3.3.0 (2018-11-17)

	updated the data to 2018g [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2018g]

3.2.1 (2018-10-30)

	ATTENTION: the package importlib_resources is now required

	fixing automatic Conda build by exchanging pkg_resources.resource_stream with importlib_resources.open_binary

	added tests for overflow in helpers.py/inside_polygon()

3.2.0 (2018-10-23)

	ATTENTION: the package kwargs_only [https://github.com/adamchainz/kwargs-only] is not a requirement any more!

	fixing #63 (kwargs_only not in conda) enabling automatic conda forge builds by directly providing the kwargs_only functionality again

	added example.py with the code examples from the readme

	fixing #62 (overflow happening because of using numpy.int32): forcing int64 type conversion

3.1.0 (2018-09-27)

	fixing typo in requirements.txt

	updated publishing routine: reminder to include all direct dependencies and to compile the requirements.txt with python 2 (pip-tools)

3.0.2 (2018-09-26)

	ATTENTION: the package kwargs_only [https://github.com/adamchainz/kwargs-only] is now required! This functionality has previously been implemented by the author directly within this package, but some code features got deprecated.

	updated build/testing/publishing routine

	fixing issue #61 (six dependency not listed in setup.py)

	no more default arguments for timezone_at() and certain_timezone_at()

	no more comparison to (py-)tzwhere in the tests (test_it.py)

	updated requirements.txt (removed tzwhere and dependencies)

	prepared helpers_test.py for also testing helpers_numba.py

	exchanged deprecated inspect.getargspec() into .getfullargspec() in functional.py

3.0.1 (2018-05-30)

	fixing minor issue #58 (readme not rendering in pyPI)

3.0.0 (2018-05-17)

	ATTENTION: the package six is now required! (was necessary because of the new testing routine. improves compatibility standards)

	updated build/testing/publishing routine

	updated the data to 2018d [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2018d]

	fixing minor issue #52 (shortcuts being out of bounds for extreme coordinate values)

	
	the list of polygon ids in each shortcut is sorted after freq. of appearance of their zone id.
	this is critical for ruling out zones faster (as soon as just polygons of one zone are left this zone can be returned)

	using argparse package now for parsing the command line arguments

	added option of choosing between functions timezone_at() and certain_timezone_at() on the command line with flag -f

	the timezone names are now being stored in a readable JSON file

	adjusted the main test cases

	corrections and clarifications in the readme and code comments

2.1.2 (2017-11-20)

	bugfix: possibly uninitialized variable in closest_timezone_at()

2.1.1 (2017-11-20)

	updated the data to 2017c [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2017c]

	minor improvements in code style and readme

	include publishing routine script

2.1.0 (2017-05-19)

	updated the data to 2017a [https://github.com/evansiroky/timezone-boundary-builder/releases/tag/2017a] (tz_world is not being maintained any more)

	the file_converter has been updated to parse the new format of .json files

	the new data is much bigger (based on OSM Data, +40MB). I am sorry for this but its still better than small outdated data!

	in case size and speed matter more you than actuality, you can still check out older versions of timezonefinder(L)

	the new timezone polygons are not limited to the coastlines, but they are including some large parts of the sea. This makes the results of closest_timezone_at() somewhat meaningless (as with timezonefinderL).

	the polygons can not be simplified much more and as a consequence timezonefinderL is not being updated any more.

	simplification functions (used for compiling the data for timezonefinderL) have been deleted from the file_converter

	the readme has been updated to inform about this major change

	some tests have been temporarily disabled (with tzwhere still using a very old version of tz_world, a comparison does not make too much sense atm)

2.0.1 (2017-04-08)

	added missing package data entries (2.0.0 didn’t include all necessary .bin files)

2.0.0 (2017-04-07)

	
	ATTENTION: major change!: there is a second version of timezonefinder now: timezonefinderL [https://github.com/jannikmi/timezonefinderL]. There the data has been simplified
	for increasing speed reducing data size. Around 56% of the coordinates of the timezone polygons have been deleted there. Around 60% of the polygons (mostly small islands) have been included in the simplified polygons.
For any coordinate on landmass the results should stay the same, but accuracy at the shorelines is lost.
This eradicates the usefulness of closest_timezone_at() and certain_timezone_at() but the main use case for this package (= determining the timezone of a point on landmass) is improved.
In this repo timezonefinder will still be maintained with the detailed (unsimplified) data.

	file_converter.py has been complemented and modified to perform those simplifications

	introduction of new function get_geometry() for querying timezones for their geometric shape

	added shortcuts_unique_id.bin for instantly returning an id if the shortcut corresponding to the coords only contains polygons of one zone

	data is now stored in separate binaries for ease of debugging and readability

	polygons are stored sorted after their timezone id and size

	timezonefinder can now be called directly as a script (experimental with reduced functionality, cf. readme)

	optimisations on point in polygon algorithm

	small simplifications in the helper functions

	clarification of the readme

	clarification of the comments in the code

	referenced the new conda-feedstock in the readme

	referenced the new timezonefinder API/GUI

1.5.7 (2016-07-21)

	ATTENTION: API BREAK: all functions are now keyword-args only (to prevent lng lat mix-up errors)

	fixed a little bug with too many arguments in a @jit function

	clarified usage of the package in the readme

	prepared the usage of the ahead of time compilation functionality of Numba. It is not enabled yet.

	sorting the order of polygons to check in the order of how often their zones appear, gives a speed bonus (for closest_timezone_at)

1.5.6 (2016-06-16)

	using little endian encoding now

	introduced test for checking the proper functionality of the helper functions

	wrote tests for proximity algorithms

	improved proximity algorithms: introduced exact_computation, return_distances and force_evaluation functionality (s. Readme or documentation for more info)

1.5.5 (2016-06-03)

	using the newest version (2016d, May 2016) of the tz world data

	holes in the polygons which are stored in the tz_world data are now correctly stored and handled

	rewrote the file_converter for storing the holes at the end of the timezone_data.bin

	added specific test cases for hole handling

	made some optimizations in the algorithms

1.5.4 (2016-04-26)

	using the newest version (2016b) of the tz world data

	rewrote the file_converter for parsing a .json created from the tz_worlds .shp

	had to temporarily fix one polygon manually which had the invalid TZID: ‘America/Monterey’ (should be ‘America/Monterrey’)

	had to make tests less strict because tzwhere still used the old data at the time and some results were simply different now

1.5.3 (2016-04-23)

	using 32-bit ints for storing the polygons now (instead of 64-bit): I calculated that the minimum accuracy (at the equator) is 1cm with the encoding being used. Tests passed.

	Benefits: 18MB file instead of 35MB, another 10-30% speed boost (depending on your hardware)

1.5.2 (2016-04-20)

	added python 2.7.6 support: replaced strings in unpack (unsupported by python 2.7.6 or earlier) with byte strings

	timezone names are now loaded from a separate file for better modularity

1.5.1 (2016-04-18)

	
	added python 2.7.8+ support:
	Therefore I had to change the tests a little bit (some operations were not supported). This only affects output.
I also had to replace one part of the algorithms to prevent overflow in Python 2.7

1.5.0 (2016-04-12)

	automatically using optimized algorithms now (when numba is installed)

	added TimezoneFinder.using_numba() function to check if the import worked

1.4.0 (2016-04-07)

	
	Added the file_converter.py to the repository: It converts the .csv from pytzwhere to another .csv and this one into the used .bin.
	Especially the shortcut computation and the boundary storage in there save a lot of reading and computation time, when deciding which timezone the coordinates are in.
It will help to keep the package up to date, even when the timezone data should change in the future.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 timezonefinder	

Index

 _
 | B
 | C
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | S
 | T
 | U
 | Z

_

 	
 	__init__() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

B

 	
 	bin_file_location (timezonefinder.TimezoneFinder attribute)

 	(timezonefinder.TimezoneFinderL attribute)

 	
 	binary_data_attributes (timezonefinder.TimezoneFinder attribute)

 	(timezonefinder.TimezoneFinderL attribute)

C

 	
 	certain_timezone_at() (timezonefinder.TimezoneFinder method)

 	
 	coords_of() (timezonefinder.TimezoneFinder method)

G

 	
 	get_geometry() (timezonefinder.TimezoneFinder method)

 	get_polygon() (timezonefinder.TimezoneFinder method)

 	
 	get_polygon_boundaries() (timezonefinder.TimezoneFinder method)

 	get_shortcut_polys() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

H

 	
 	hole_adr2data (timezonefinder.TimezoneFinder attribute)

 	hole_coord_amount (timezonefinder.TimezoneFinder attribute)

 	
 	hole_data (timezonefinder.TimezoneFinder attribute)

 	hole_registry (timezonefinder.TimezoneFinder attribute)

I

 	
 	in_memory (timezonefinder.TimezoneFinder attribute)

 	(timezonefinder.TimezoneFinderL attribute)

 	
 	inside_of_polygon() (timezonefinder.TimezoneFinder method)

M

 	
 	
 module

 	timezonefinder

 	
 	most_common_zone_id() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

N

 	
 	nr_of_polygons (timezonefinder.TimezoneFinder property)

 	
 	nr_of_zones (timezonefinder.TimezoneFinder property)

 	(timezonefinder.TimezoneFinderL property)

O

 	
 	outside_the_boundaries_of() (timezonefinder.TimezoneFinder method)

P

 	
 	poly_adr2data (timezonefinder.TimezoneFinder attribute)

 	poly_bounds (timezonefinder.TimezoneFinder attribute)

 	poly_coord_amount (timezonefinder.TimezoneFinder attribute)

 	
 	poly_data (timezonefinder.TimezoneFinder attribute)

 	poly_nr2zone_id (timezonefinder.TimezoneFinder attribute)

 	poly_zone_ids (timezonefinder.TimezoneFinder attribute)

 	(timezonefinder.TimezoneFinderL attribute)

S

 	
 	shortcut_mapping (timezonefinder.TimezoneFinder attribute)

 	(timezonefinder.TimezoneFinderL attribute)

T

 	
 	timezone_at() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

 	timezone_at_land() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

 	timezone_names (timezonefinder.TimezoneFinder attribute)

 	(timezonefinder.TimezoneFinderL attribute)

 	
 	
 timezonefinder

 	module

 	TimezoneFinder (class in timezonefinder)

 	TimezoneFinderL (class in timezonefinder)

U

 	
 	unique_timezone_at() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

 	unique_zone_id() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

 	
 	using_clang_pip() (timezonefinder.TimezoneFinder static method)

 	(timezonefinder.TimezoneFinderL static method)

 	using_numba() (timezonefinder.TimezoneFinder static method)

 	(timezonefinder.TimezoneFinderL static method)

Z

 	
 	zone_id_of() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

 	zone_ids_of() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

 	
 	zone_name_from_id() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

 	zone_name_from_poly_id() (timezonefinder.TimezoneFinder method)

 	(timezonefinder.TimezoneFinderL method)

 [image: _images/badge.svg]
 [https://github.com/jannikmi/timezonefinder/actions?query=branch%3Amaster][image: documentation status]
 [https://timezonefinder.readthedocs.io/en/latest/?badge=latest][image: _images/timezonefinder.svg]
 [https://pypi.python.org/pypi/timezonefinder][image: pre-commit]
 [https://github.com/pre-commit/pre-commit][image: total PyPI downloads]
 [https://pepy.tech/project/timezonefinder][image: latest version on PyPI]
 [https://pypi.python.org/pypi/timezonefinder][image: latest version on conda-forge]
 [https://anaconda.org/conda-forge/timezonefinder][image: _images/code%2520style-black-000000.svg]
 [https://github.com/psf/black]

 nav.xhtml

 Table of Contents

 		
 timezonefinder

 		
 Getting Started

 		
 Installation

 		
 Dependencies

 		
 Basic Usage

 		
 Usage

 		
 Initialisation

 		
 timezone_at()

 		
 timezone_at_land()

 		
 unique_timezone_at()

 		
 certain_timezone_at()

 		
 closest_timezone_at()

 		
 get_geometry()

 		
 TimezoneFinderL

 		
 Using vectorized input

 		
 Calling timezonefinder from the command line

 		
 Use Cases

 		
 Creating aware datetime objects

 		
 Getting a location’s time zone offset

 		
 Django

 		
 Use other data

 		
 File converter script

 		
 Data parsing shell script

 		
 Performance

 		
 C extension

 		
 Numba

 		
 In memory mode

 		
 Speed Benchmark Results

 		
 Timezone finding

 		
 Point in polygon checks

 		
 Initialisation

 		
 About

 		
 Data

 		
 References

 		
 License

 		
 Alternative python packages

 		
 Comparison to tzfpy

 		
 Comparison to pytzwhere

 		
 Contact

 		
 Acknowledgements

 		
 API

 		
 TimezoneFinderL

 		
 TimezoneFinderL

 		
 TimezoneFinder

 		
 TimezoneFinder

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Changelog

 		
 6.5.0 (2024-03-14)

 		
 6.4.1 (2024-02-08)

 		
 6.4.0 (2024-02-02)

 		
 6.3.0 (2024-02-01)

 		
 6.2.0 (2023-03-26)

 		
 6.1.10 (2023-03-22)

 		
 6.1.9 (2022-12-06)

 		
 6.1.8 (2022-11-25)

 		
 6.1.7 (2022-11-20)

 		
 6.1.6 (2022-10-30)

 		
 6.1.5 (2022-10-25)

 		
 6.1.4 (2022-10-23)

 		
 6.1.3 (2022-09-23)

 		
 6.1.2 (2022-09-13)

 		
 6.1.1 (2022-08-18)

 		
 6.1.0 (2022-08-15)

 		
 6.0.2 (2022-07-08)

 		
 6.0.1 (2022-05-20)

 		
 6.0.0 (2022-05-09)

 		
 5.2.0 (2021-02-09)

 		
 5.1.1 (2021-02-03)

 		
 5.1.0 (2021-01-14)

 		
 5.0.0 (2020-12-23)

 		
 4.5.0 (2020-11-06)

 		
 4.4.1 (2020-08-04)

 		
 4.4.0 (2020-05-14)

 		
 4.3.1 (2020-04-29)

 		
 4.3.0 (2020-04-28)

 		
 4.2.0 (2019-12-15)

 		
 4.1.0 (2019-07-07)

 		
 4.0.3 (2019-06-23)

 		
 4.0.2 (2019-04-01)

 		
 4.0.1 (2019-03-12)

 		
 4.0.0 (2019-03-12)

 		
 3.4.2 (2019-01-15)

 		
 3.4.1 (2019-01-13)

 		
 3.4.0 (2019-01-06)

 		
 3.3.0 (2018-11-17)

 		
 3.2.1 (2018-10-30)

 		
 3.2.0 (2018-10-23)

 		
 3.1.0 (2018-09-27)

 		
 3.0.2 (2018-09-26)

 		
 3.0.1 (2018-05-30)

 		
 3.0.0 (2018-05-17)

 		
 2.1.2 (2017-11-20)

 		
 2.1.1 (2017-11-20)

 		
 2.1.0 (2017-05-19)

 		
 2.0.1 (2017-04-08)

 		
 2.0.0 (2017-04-07)

 		
 1.5.7 (2016-07-21)

 		
 1.5.6 (2016-06-16)

 		
 1.5.5 (2016-06-03)

 		
 1.5.4 (2016-04-26)

 		
 1.5.3 (2016-04-23)

 		
 1.5.2 (2016-04-20)

 		
 1.5.1 (2016-04-18)

 		
 1.5.0 (2016-04-12)

 		
 1.4.0 (2016-04-07)

_static/minus.png

_static/plus.png

_static/file.png

